在平和中见新意,在朴实中见灵动
——全国三卷理科数学试题评析
学而思高考研究中心 詹昊凯
2018年全国三卷理科数学试题从整体上讲,没有片面或者过度的追求创新,试题简洁明快、自然清新,阅读量小,在平和中见新意,在朴实中见灵动,非常重视基础知识、基本技能和基本思想方法的考查,坚持能力立意,突出对高中数学主干内容的考查,没有什么偏题和怪题,对中学数学教学有很好的导向作用。
具体来说,今年理科三卷试题有以下一些特色:
试题注重对基础知识和基本技能的考查,贴近高中教学实际,试卷中的每种题型均设置了数量较多的基础题,许多试题都是单一知识点或者最简单知识的交汇,这类试题能够很好的稳定考生情绪,也对中学数学重视基础知识和基本技能教学具有良好的导向作用.
同时试题也对支撑数学知识体系的主干内容进行了重点考查,如函数与导数、平面向量与三角函数、立体几何、解析几何、数列、计数原理与概率统计等内容的考查竟然高达130分,这充分的体现了理科三卷试题对主干知识的重视程度.
今年理科三卷数学试题以稳为主,没有片面或者过度的追求创新,但很多试题还是在平和中见到了一丝新意,如第3题,以中国古建筑借助榫卯连接木构件为背景,很好的命制了一道三视图试题,考生需要先观察卯眼的直观图,再想象其俯视图,这和以往多数通过所给三视图想象直观图的命题方式相比,确实增添了一些新意,另外也传播了中国悠久的文明和智慧;再如第8题,以考生熟知的“移动支付”为切入点,很好的考查考生对概率和离散型随机变量等数学知识的理解和应用,同时也体现了中国互联网科技的飞速发展;第12题也是一道很有亮点的试题,以简单的对数运算为载体,考查考生综合运用数学知识分析和解决问题的能力,在解题过程中需要具备思维的灵活性、解题的创造性;第21题第一问不等式证明问题考查了考生转化与化归的思想方法,不同水平考生可以利用不同层次的方法解答,能够体现考生的数学能力和思维水平,第二问起点低,问题看似常规,但落点高,实际解答过程对考生的逻辑思维与运算求解能力提出了很高的要求,这类问题有利于发展学生的数学思维品质,有利于高校选拔有潜能的新生。
总之,今年理科三卷数学试题难度结构科学合理,能区分不同层次的考生,达到有利于科学选拔人才、有利于中学实施素质教育、有利于维护社会公平和稳定的目的。
① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。